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ABSTRACT OF THE THESIS

Fractal Antennas:
Design, Characterization, and Applications

by

John Gianvittorio
Master of Science in Electrical Engineering
University of California, Los Angeles, 2000
Professor Yahya Rahmat-Samii, Chair

"Fractals’ were first defined by Benoit Mandelbrot in 1975 as a way of clas-
sifying structures whose dimensions were not whole numbers. These geometries
have been used previously to characterize unique occurrences in nature that were
difficult to define with Euclidean geometries, including the length of coastlines,

the density of clouds, and the branching of trees.

Antenna design can benefit from studying these geometries. Looking at ge-
ometries whose dimensions are not limited to integers may lead to the discovery
of antennas with improved characteristics over that which exist today. Fractal
antennas have shown the possibility to miniaturize antennas and to improve in-
put matching. Certain classes of fractal antennas can be configured to operate

effectively at various frequency bands.

There are three distinct advantages which are studied in this thesis by using
fractal antennas. First, fractal geometries can be implemented to miniaturize
resonant loop and dipole antennas. Also, designing with fractal geometries can

overcome limitations to improve the input resistance of antennas that are typically

XV



hard to match to feeding transmission lines. Furthermore, the self-similar nature
in the fractal geometry can be utilized for operating a fractal antenna at various

frequencies.

Fractal antennas can be utilized in a variety of applications, especially where
space is limited. An example of exploiting the benefits of fractals in antenna
systems are phased arrays, where fractals can reduce mutual coupling and allow

for lower scan angles.
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CHAPTER 1

Introduction

Fractal geometries have found an intricate place in science as a representation of
some of the unique geometrical features occurring in nature. Fractals are used to
describe the branching of tree leaves and plants, the sparse filling of water vapor
that forms clouds, the random erosion that carves mountain faces, the jaggedness

of coastlines and bark, and many more examples in nature.

The complexity of the situation can be surmised in the following visualization,
depicted in Figure 1.2, of a microscopic fly flying towards a piece of paper [2].
The fly starts out very far from the object, in Figure 1.2 (a), thus it appears
as a zero-dimensional speck. As the fly gets closer, in Figure 1.2 (b), the speck
begins to elongate into a one-dimensional line. Upon flying over the line, in
Figure 1.2 (c), the fly sees that it is actually a two-dimensional plane. Flying
even closer in Figure 1.2 (d), the fly sees that the plane has a depth to it, as
well, forming a three-dimensional prism; followed by flying closer still, sees only
a two-dimensional plane. Finally, the fly flies into the piece of paper, seeing a

one-dimensional network of fibers.

Another classical conundrum depicting the need for fractal geometry is the
attempt to measure a coastline, like the coastline of North America shown in
Figure 1.3. As an example in this thought experiment, say a surveyor were to use
a ruler that is 1 kilometer long to measure the length by counting the number

of rulers, lined up end to end, that fit around the coast. By multiplying the



Figure 1.1: Fractal Landscape 280294 by Roger B.J. Baron [1]. This landscape
scene was created using a fractal. Clouds, coastlines, trees, and even water sur-

faces can be modeled with fractals.

a) c) d)

Figure 1.2: A fly flying towards a piece of paper from very far away reveals the

b)

conundrum of defining dimensions.



Figure 1.3: Measuring the length of the coastline of North America exemplifies

fractal geometry found in nature.

number of rulers by 1 kilometer, he has an approximate measure of the length of
the coast. However, if he switches to a ruler that is only 1 meter in length and
repeats the experiment, the result will be different. The 1 meter ruler will measure
inside coves and lagoons that the 1 kilometer ruler smoothed over. Likewise, a 1
centimeter ruler will measure around rocks that the 1 meter ruler missed. This
can continue down to the atomic scale, with the measured length of the coast
increasing every time. While the coast of North America fits in a finite volume on
earth, it is possible to take this thought experiment to the limit and suggest that
with a ruler small enough, the surveyor will measure the length to be infinite!

This is a Zeno paradox that was studied by ancient Greeks [3].

Therefore, there is a need for a geometry that handles these complex situa-
tions better than Euclidean geometry. Euclidean structures have whole number
dimensions, such as a one dimensional line or a two dimensional plane. Benoit
Mandelbrot first defined the term ’fractal’, meaning fractional dimension, in 1975
to handle geometries with dimensions that do not fall neatly into a whole num-

ber category. One property of a certain class of fractals, as seen in the previous



Figure 1.4: A fern is a common example of a geometry in nature that is easily

modeled using fractal geometry.

coastline example, is the unique property that it can have an infinite length while

fitting in a finite volume.

Fractals, as used in this work, are structures of infinite complexity with a
self-similar nature. What this means, is that as the structure is zoomed in upon,
the structure repeats. There never is a point where the fundamental building
blocks are found. This is because the building blocks themselves have the same

form as the original object with infinite complexity in each one.

An example of this in nature can be seen in a fern, shown in Figure 1.4. The
entire frond has the same structure as each branch. If the individual branches
were zoomed in upon, it is quite conceivable to imagine this as a completely

separate frond with branches of its own.

The idea of a dimension that is in between those of Euclidean geometries has
opened up a new range for many applications, one of which being electromagnetic
systems. It can be used to develop new configurations for radiators and reflectors.
It might be possible to discover antennas that give us better performance than

any Euclidean geometry could provide.



1.1 Outline of Work

In this thesis, various fractal geometries are investigated as antennas. There
are an infinite number of possible geometries that are available to try. The
ones tried here provide a broad overview of several different classes and their
various characteristics. The fractals that are investigated are all deterministic

and truncated.

Deterministic fractals have a predefined geometry. Fractals can have a random
component in them that allows for better modeling of the randomness of nature.
If the fern from the previous section is observed, the branches of the individual
frond have varying lengths. The fractal that is used to generate a mathematical
model could also, therefore, allow the branches to be of various lengths. All of
the fractals that are studied here do not have this random quality. There is a

predefined and repeatable generating methodology for each of the geometries.

Another key aspect of using fractals as antennas is the need to truncate the
generating procedure. While an ideal fractal may have an infinite complexity like
the ever increasing length of a coastline, the infinitesimally small details do not
affect the performance of a radiator. The point of truncation is not something
that can be discussed here globally for all of the fractals that are studied. Rather,
in the individual sections this area is covered for each of the particular geometries.
In this thesis, the performance of antennas generated with various numbers of
iterations are observed. By comparing the performance of a series of truncated
fractals, trends emerge which allude to the ideal performance of a fractal that
may not be directly observable due to fabrication or simulation limitations. The
concept of generating fractals by iterations is best conveyed with examples and

is shown in the beginning of each section for the relevant geometry.



Fractals as antennas are simulated using the moment method. The basics of
the simulation method and the code that is used are discussed in chapter 3. In
addition, several of the antennas are fabricated. These methods are discussed in

chapter 4.

The classes of fractals that are studied are outlined in Figure 1.5. The three
cases are fractal dipoles, fractal loops, and fractal multiband antennas. In addi-

tion, applications that utilize fractal antennas are investigated.

Fractal dipoles are wire antennas. The fractal structure is mirrored on either
side of the generator. These antennas are mostly compared to straight dipoles at
resonance. One can expect that using a fractal over a straight Euclidean dipole
can miniaturize the antenna, while maintaining performance. The structures that
are studied include a Koch fractal, a fractal tree structure and a three dimensional
version of the fractal tree. The geometries of each of these are explained in detail

in chapter 6.

Fractal loop antennas are closed island fractals that are fed as loop antennas.
These are compared with Euclidean circular and square loop antennas at reso-
nance and below resonance. The expectation for this type of antenna is that the
size is miniaturized for resonant antennas, while the input resistance is improved
for fractal antennas configured for operation below resonance. The geometries of

each of these are explained in chapter 5.

While all fractals are inherently multiband due to the scaled self-similarity in
their structures, another section explores one type of fractal that is particularly
suited for multiband operation, a Sierpinski sieve. The characteristics at each
resonance are compared and some physical explanations on the nature of why it

operates so well as a multiband antenna are given in chapter 7.

Finally, the antennas are applied to some unique applications and are sim-



Loops
Minimize Size
Increase Input Impedan

P

Dipoles
Minimize Heights
Increase Input Impedan

T
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Applications

Figure 1.5: The various fractal geometries that are studied in this thesis. They fall
into three main categories: fractal dipoles, fractal loops, and multiband fractal

dipoles. Also, applications utilizing these geometries have been studied.



ulated in such configurations. In chapter 8, applications for these particular
antennas are proposed and developed. These examples include applications re-
quiring miniaturized antennas. One of these applications that is investigated and
developed is fractal elements in arrays. The miniaturized elements reduce mutual
coupling between the elements allowing for more robust and reliable designs. It
also allows tighter packing of elements, lowering the allowable scan angles for

arrays.



CHAPTER 2

Survey of Literature

There has been a lot of interest in fractal antennas recently. Since Mandelbrot
first defined the geometry, fractals have found many applications. Their use as
antennas is one of these unique applications. Presented below is a summary of

the publications resulting from some of the research on fractal antennas.

A quick reference table to locate references is provided in Table 2.1.

2.1 Fractals

Fractal geometry was first defined by Benoit Mandelbrot [39, 2], to define many

perplexing geometries found in nature.

A good reference on the basics of fractal geometry, especially on how they
pertain to the field of electrodynamics can be found in [4]. It provides a tutorial

on fractal geometry, outlining the necessary vocabulary of the field.

Specific to antennas, an interesting analysis of some classical frequency-independent

antennas using fractal geometric principles is investigated in [5] and [6].

Reference [7] serves as an overview article of many of the possibilities of using
fractals. The authors present some fractal geometries as fractal elements as well

as arrays.

The book [8] includes a compilation of papers on fractals applied to electro-



Table 2.1: Relevant references for fractal antennas sorted by category.
Fractals

2] [4] [5] [6] [7] [8] [9]

Fractal Elements

Sierpinski Sieve
[10] [11] [12] [13] [14] [15]
[16] [17] [18] [19] [20] [21]

Fractal Loop
[22] [23] [24]

Koch Dipole
[25] [26] [14]

Fractal Trees
[27] [28] [17] [29]

Applications

Fractal Arrays
(30] [31] [32] [33] [34] [35]
[36] [37] [38]

magnetics.

A recent publication that serves as a very good reference for fractal antennas

as elements and as arrays is [9)].

2.2 Sierpinski Sieve

This multiband antenna, which is explored in chapter 7, has been exhaustively

researched previously. Carlos Puente has published four works of interest on this

10



antenna. A thorough description and experimentation is documented in [10] and
[11]. The authors present variations on the Sierpinski geometry and present the
effects of these variations on the characteristics of the antenna in [12] and [13].
These two papers describe the effects of modifying the geometry of the Sierpinski
gasket. The desired changes are improved matching and control of the multiple

bands.

The Sierpinski antenna is fabricated and measured verifying previous results
in [14].

The simulated predictions of the current distribution over the Sierpinski sieve
antenna showing the multiband nature of the antenna were verified using infra-
red thermograms in [15]. The authors fabricated the antenna and measured the

current distribution with a near field thermogram technique.

In [16], an efficient numerical model is presented for predicting the input
performance of a Sierpinski sieve antenna. The numerical models are compared

with measured input matches of fabricated Sierpinski sieve antennas.

Similar experimentation showing how the multiband characteristics of the
Sierpinski sieve antenna is unique to this geometry and not all fractals is shown
in [17]. In this work, the Sierpinski sieve is compared to a Sierpinski carpet, a
similar geometry with a square starting shape rather than a triangle, as is the
case for a Sierpinski sieve. The results do not show a multiband characteristic

like that found with the Sierpinski sieve.

The Sierpinski sieve antenna was also analyzed using the time-domain electric-

field integral equation using a marching-on-in-time procedure in [18].

This type of antenna has been explored in other configurations, as well. In
[19], the author shows how sandwiching the antenna between scaled copies of

itself increases the bandwidth of the antenna. While a single Sierpinski gasket

11



has distinct bands, this technique can be used to improve the match between
bands. Improved bandwidth using this technique and variations of the Sierpinski

carpet fractal were shown in [20].

Another use of the Sierpinski gasket was explored in [21]. Here, the fractal

geometry was utilized to develop a multiband frequency selective surface (FSS).

2.3 Fractal Loop

Fractal loops have been studied as a means of miniaturizing loop antennas. In
[22], [23] and [24], the author describes some of the basic parameters of fractals
and their relevant benefits as antennas. In these papers, a Minkowski square loop
is simulated and used as a Ham radio antenna. This type of antenna is studied

here in detail in chapter 5.2.

Also in [23] is the use of these closed loop fractals as sparse meshes to be used

as ground planes.

2.4 Koch Dipole

The Koch Dipole has been researched as a means of miniaturizing dipole anten-
nas. The details about their geometry and performance of this geometry as an
antenna are in chapter 6.1. There have been several works which have looked
into this topic. A descriptive source of information on this antenna can be found
in [25]. They describe the miniaturization effects as they relate to the iteration

of the fractal.

The Koch dipole is also used in [26] in an investigation of the necessary re-

quirements for frequency independent antennas.
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The Koch monopole antenna is fabricated and measured verifying previous

results in [14].

2.5 Fractal Trees

Fractal antennas that have been designed to mimic the branching property of
trees have been investigated in some detail, as well. They are covered here in

chapter 6.2.

Electrochemical deposits that grow into tree like patterns have been studied
in [27]. This particular type of fractal is not deterministic like the other fractals
that have been observed. This type of fractal is grown randomly resulting in
variously scaled branches. The idea of this line of research was to observe the

multiband results of this fractal from the variations of scale in the geometry.

A deterministic fractal tree was studied in [28]. Here, the authors studied the
correlation between the fractal dimension and the resulting input match. The tree

fractal that was used is variational enough to easily control the fractal dimension.

In [17], the authors explore the multiband characteristics of a deterministic
tree fractal. A correlation is made between the number of resonant bands and

the fractal iteration of the geometry.

In [29], the authors study a two-dimensional ternary tree antenna as a monopole
over a ground plane. The antenna shows distinct resonances corresponding to the
self-similar scales in the geometry. Between the bands, however, the input resis-
tance is very low, leading the authors to suggest that the structure could be well

suited as a multiband filter or absorber.
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2.6 Fractal Arrays

Fractal geometries can be applied to the design of arrays. Fractal elements used
in uniformly spaced arrays has been studied in this thesis in chapter 8. Fractals

are also utilized in array design to define the spacing of the elements.

The idea of using fractal spacing for arrays has been investigated by several
researchers. In references [30, 31, 32], the spacing of the array was shaped using
fractal geometries, while the elements were standard Euclidean shapes. Article

[32] is a very thorough study on this topic.

Arrays with the distribution of a Cantor set has been the topic of these papers,
(33, 34].

A Cantor set distribution is also implemented in [35, 36] for the spacing of
an array. Similar features of the patterns of the arrays compare to similarities
in the spacing geometry. Also, Cantor sets of different fractal dimension are
simulated, showing a correlation between the maximum side lobe level and the

fractal dimension.

A derivation of the radiation patterns for Cantor sets of distributed currents

is presented in [37].

In paper [38], the authors present an analysis of array elements in a Sierpinski

carpet configuration to create sum and difference patterns.
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CHAPTER 3

Simulation Methods

Designing antennas and radiating systems requires robust simulation tools to ob-
tain accurate characterization. The method that is utilized throughout this thesis
is a moment method code developed at UCLA [40]. In the following section, an
overview of the moment method process pertaining to the simulations completed

in this thesis is presented [41].

3.1 Moment Method

The moment method is a numerical technique for solving an integral equation
whose integrand is the current density on the body of interest. The body may
either be a length of perfectly electrical conducting wire or a perfectly electri-
cal conducting surface. In the simulations that were performed in this thesis,
dielectrics are not simulated. However, in general, the moment method can be

used in simulations involving metallic bodies and dielectrics.

3.1.1 Moment Method Solution for EFIE

The integral equation that is solved is the electrical field integral equation (EFIE).
The equation applies to perfect electrical conductors (PEC). The currents are

found by imposing the condition that tangential electric fields vanish on the
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surface of the conductors

Etotal — Eincident Escattered (3 1. 1)

tangential angential + tangential

The incident field is the field that would exist if the conducting surfaces would
be absent. The scattered fields are those that are generated from the induced
surface currents. The equivalence theorem can be utilized to remove the conduct-
ing bodies and define a sheet of current that will excite the true scattered field,
which is excited by the induced surface currents. This field from these equivalent
currents can be computed from Maxwell’s equations. The solution of Maxwell’s
equations for an electric field at an observation point r can be found using auxil-
iary potential functions, the magnetic vector potential, A, and the electric scalar

potential, ®.

Escattered — _ij(T) _ V(I)(T) (312)

Eq. (3.1.2) substituted into Eq. (3.1.1) results in the Electric Field Integral
Equation (EFIE)

[—jwA(r) — V(I)(T)]tangential = _E;'Z%deﬁtml (r) (3.1.3)
where,
A(r) = 4 / I()G(r,1')dS" (3.1.4)
s
1
d(r) = —— ! ! ! ! 1.
(r) T /. V'eJ(r')G(r,r")dS (3.1.5)
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G(r,r") = R

(3.1.6)

and R = |r — r'| is the distance between an observation point 7 and the source
point ' and k = 27“, with A being the wavelength. S is a surface that supports a

sheet of current. The sheet does not have to be continuous.

The moment method is applied to Eq. (3.1.3) to solve for the surface currents,
J. To accomplish this, it is necessary to represent the unknown currents, J, in

terms of a set of basis functions, f,

I(r') = Lt (') (3.1.7)

where I, are the unknown current coefficients. Substituting Eq. (3.1.7) into
Eq. (3.1.3) results in a set of N linear equations that provide an approximation

to the true solution. The solution converges to the true solution as N — oc.

3.1.2 Moment Method Solution for Thin Wire Radiators

For wire radiators, the calculations can be simplified by using the thin wire
approximation. This assumes that the wire radius, a, is much smaller than a
wavelength, A. Thus, the current density, J is uniformly distributed around the

circumference of the wire

Ir
J_

T 27a

(3.1.8)

where I’ is a unit vector along the axis of the wire and I is the total current
passing through a cross section of the wire. This expression for the current is
then substituted into the vector and scalar potential functions, Eq. (3.1.4) and

Eq. (3.1.5), using the substitution dS’" = ad¢'dl’.
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A(r) = 2 / K (r,r')dl (3.1.9)

~ar ),
1 dl
= — —K Ndl' 1.1
d(r) e /rw T (ryr")dl (3.1.10)

where instead of the free space Green’s function, Eq. (3.1.6), K, is used.

1 n _,—jkR
K(r,r') = %/ eR de (3.1.11)

3.1.3 Surface and Wire Basis Functions

The currents on the body surfaces and wires are approximated using a generalized
triangular basis function. The bodies are modeled as a set of triangular facets.

For the general case,

£,(r') = — (3.1.12)

where p is a vector identifying the direction of the current and h is either the
height of the triangular facet for bodies or the length of the segment for wires.

These basis functions are defined over the metallic surfaces or wires of interest.

3.1.4 Source Modeling

The feeds for the antennas and radiating structures can be modeled using ideal

voltage sources. These sources are used to calculate the incident field, Eincident

tangential’
in Eq. (3.1.1).

An ideal voltage source forces a voltage at a particular part of the structure.

For the work completed here, the voltage is forced in a gap between wires. There
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Figure 3.1: Two variations of voltage sources as feeding models. a) Delta gap

voltage generator and b) Frill voltage source.

are two voltage sources of interest that are utilized in the modeling, both are

depicted in Figure 3.1.

The first voltage source type is called a delta gap source. This source forces the
voltage at one node on a wire to a fixed value. The gap is infinitesimally small,
hence the requirement of a Dirac delta function to accurately mathematically

model the voltage.

Another type of source model is called a voltage frill model. Instead of assum-
ing a fixed voltage only in the gap of a wire, a voltage frill models the equivalent
magnetic loop induced by a ribbon of electric field that exists around the edge of
the gap of the wire. This loop induces a tapering voltage along the length of the

wire, rather than only at the gap.

A benefit of using a frill source over a delta gap source is its improved modeling
of coax antenna feeds, a popular way to feed fabricated antennas. The width of
the magnetic loop is specified with a frill source, which directly correlates with
the dimensions of the coax probe. The improved modeling leads to more accurate

predictions of the input impedance.

Using these voltage sources also allows for accurate modeling of array anten-
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nas. Multiple voltage sources can be supplied, with varying excitation levels and
phases. Modeling arrays in this manner is very effective because mutual coupling

between all radiating elements is taken into consideration.

3.1.5 Far Field Calculations

The radiation patterns from the simulated antennas can be calculated by ra-
diating the computed currents. This can be done using the standard far field

approximations.

E = —jwAr (3.1.13)
H=-""%xAr (3.1.14)
n

where n = \/g and T is a unit vector in the observed direction of the far field,

I = Xsinf cos ¢ + y sinfsin ¢ + z cos 6 (3.1.15)

and A7 denotes the transverse component of A, which in the far field reduces to

U 6fjlcr
A(T) = E ,

/ J(r')e kT g (3.1.16)
S

The directivity of the antenna is calculated from

u(o, )

D(0, ¢) = 4n P

(3.1.17)

where the radiation intensity, U(6, ¢) (W /unit solid angle), is a far field parameter
that is independent of r. It can be found from both polarization components of

the scattered electric field,
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U0, 6) = %QE@(@, O + |Es(6,6)) (3.1.18)

The power supplied to the antenna is computed from the sum of the applied
voltage sources and the computed currents. Therefore, for NV voltage sources, the

power input to the antenna would be

1 %
P =) 5R(VL) (3.1.19)
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CHAPTER 4

Fabrication Methods

In addition to simulating the performance of the antennas, several of the final

designs were fabricated and tested in the anechoic chamber at UCLA [42].

The antennas were fabricated by printing the design on a piece of copper clad

dielectric. The methodology of how this was done is laid out in the next sections.

4.1 Design

The fractal antennas were designed and simulated as metallic bodies in free space,
which works very well in simulation, but is difficult to fabricate. These antennas
were built by printing them on a piece of dielectric. The antennas that were
fabricated were designed as wire antennas. Printing them on a substrate slightly
changes the dimensions of the antenna by slowing the electromagnetic waves
passing through the dielectric. This causes the antenna to look electrically bigger

than it really is. The equation to compensate for this is presented below.

As with dipoles, loop antennas require a balun to generate positive and neg-
ative feeds for the antenna. For dipoles, a popular feeding technique is to mount
the monopole over a ground plane. The image then becomes the negative half
of the antenna. The same principle was used to fabricate a loop antenna. One
half of the loop antenna was printed on a piece of dielectric and mounted over a

ground plane as shown in Figure 4.1. One end of the printed loop was fed with
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Ground Plane

Coax Feed

Figure 4.1: Printed half loop antenna mounted over ground plane. Actual anten-

na and image is equivalent to loop in free space.

a coax feed through the ground plane, as a monopole would be fed. The other
end was touching the ground plane. For a resonant loop antenna the current at
this end of the antenna should be zero, thus having it touch the ground plane

has little effect. The ground plane is a flat piece of copper sheeting.

Using image theory, the currents can be predicted to operate in exactly the

same fashion as a loop in free space.

The disadvantages of this method are that it requires a large ground plane
and very careful manufacturing. Because only half of the antenna is fabricated,
the depth of the coax probe through the ground plane is very critical to setting

the length of the perimeter of the loop.

Another method was developed to make the antennas more precisely manu-
facturable. The exact dimensions of the loop could be better controlled if the

entire loop could be printed instead of just half.

A co-planar strip feed was utilized as a balun. A co-planar strip includes two
transmission lines that are 180° out of phase with each other. A microstrip feed

and delay line was used to feed the co-planar strip lines out of phase.

This feeding network is shown in Figure 4.2.
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Microstrip

CPS
(Co-planar strip)

Figure 4.2: Microstrip to co-planar strip feed for printed loop antennas.

The first section includes a microstrip transmission line and splitter feeding
delay lines, which in turn feeds the co-planar strip. As can be seen in the figure,
the ground plane is only under the microstrip section. The co-planar strips do

not require a ground plane beneath the dielectric.

Having a piece of dielectric behind any printed antenna serves to slow down the
electromagnetic wave making the antenna seem electrically larger. The resulting
shift in frequency is calculated by assuming the effective dielectric that is seen
by the antenna is an average between the dielectric material and free space as

predicted in Eq. (4.1.1)

1

)\effective = Ao
Erelativetl
\/ 2

The printed antenna can also excite surface waves in the substrate depending

(4.1.1)

on its thickness and dielectric constant. These waves are not simulated in this
thesis. These antennas can be printed on thin, low dielectric substrates that do

not support surface waves.
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4.2 Materials

The antennas were printed on different Duroid material. The specifications for

the different dielectrics are given in Table 4.1

Table 4.1: Electrical properties of substrates used of for fabrication

€relative thickness (mils) CU thickness (mils) loss tangent
Rogers 5880 2.33 62 15 0.0009
Rogers 6006 6.15 20 15 0.0009
Rogers 5880 2.33 25 15 0.0009

4.3 Process

The antennas were printed using standard photolithography and etching tech-
niques. The mask is made by transferring the antenna outline onto a piece of
Ruby-Lithe, photolithography film. The copper clad substrate is cleaned and
evenly coated with photoresist and baked to allow the photoresist to set. The
coated substrate is then exposed to UV light in a light box using the Ruby-Lithe
mask to block the areas where the metal will remain. The circuit is then etched

in a FeCl solution. The complete process is outlined in [43].

4.4 Testing

The antennas were tested in an anechoic chamber in the Antenna Lab at UCLA.
The measurement chamber is 9 feet x 8 feet x 18 feet 9 inches. The patterns are
measured using an Orbit/FR 959 Automated Antenna Measurement Workstation

controlling a HP 8510B network analyzer. The chamber is illuminated with an
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Figure 4.3: Photograph inside anechoic chamber at the Antenna Lab at UCLA.

AEL 1498 horn antenna. The operating frequency range of the chamber is 2-18
GHZ. A picture taken inside the chamber while testing a fractal loop antenna

is shown in Figure 4.3. A zoomed photograph of the antenna on the rotating

pedestal is shown in Figure 4.4.
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Figure 4.4: Photograph inside anechoic chamber zoomed in on fractal loop an-

tenna on rotating pedestal.

27



CHAPTER 5

Fractal Loop Antennas

Loop antennas are well understood and have been studied using a variety of
Euclidean geometries. They have distinct limitations, however. Resonant loop
antennas require a large amount of space and small loops have very low input
resistance. A fractal island can be used as a loop antenna to overcome these

drawbacks. Two possible fractals fed as loop antennas are depicted in Figure 5.1.

The fractals are variations of Minkowski and Koch islands. These types of
fractals are commonly used to model unique geometries found in nature from

snowflakes to coastlines.

Fractal loops have the characteristic that the perimeter increases to infinity
while maintaining the volume occupied. This increase in length decreases the
required volume occupied for the antenna at resonance. For a small loop, this
increase in length improves the input resistance. By raising the input resistance,

the antenna can be more easily matched to a feeding transmission line.

These antennas have been simulated using the moment method. The resonant

loop antennas were fabricated and tested as described in chapter 4.
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Figure 5.1: Feeding configuration for two variations of a fractal loop, a Koch

fractal loop and a Minkowski fractal loop.

5.1 Small Loops

Small loop antennas are known to have a low input resistance. Therefore, match-
ing the antenna to a 50 €2 feed line can be difficult. Fractal loops can be used to
increase the input resistance of a small loop antenna. A Koch island loop that
fits inside of a small circular loop can be shown to have a much higher input

resistance.

5.1.1 Fractal Generation

The starting pattern for the Koch island that is used as a fractal antenna is a
triangle. From this starting pattern, every segment of the starting pattern is
replaced by the generator. The first four iterations are shown in Figure 5.2 to
exemplify the process. One iteration of replacing a segment with the generator
is shown in the bottom of Figure 5.2. The starting pattern is Euclidean and,

therefore, the process of replacing the segment with the generator constitutes the
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Generator

Figure 5.2: Sequence for generating a Koch loop. Each iteration is generated by

replacing each segment of the previous iteration with the generator.

first iteration.

The generator is a straight segment that has been broken into three equally
sized pieces. The middle section is removed and replaced with two straight pieces
of the same length as the one removed. They fit into the original gap in a
equilaterally triangular fashion. Therefore, the resulting shape, the generator,
retains the same overall length. The total length of the generator, however, is

one third longer than it was previously.

Each of the three sides of the starting triangle is replaced with the generator.
This resulting shape then becomes the new starting pattern. Each segment in
this new shape is then replaced with the generator. The generator is scaled at
every iteration such that the endpoints of the segment that it is replacing and

the endpoints of the generator match.

The iterative process of replacing each segment is continued for every new

shape. For a true fractal, this process is repeated an infinite number of times.

From the explanation above regarding the length of the generator versus the
length of the straight segment that it is replacing, it can be seen that the endpoints
of the starting shape do not ever move. The five iterations shown in Figure 5.2

are all drawn on the same scale. It can clearly be seen that the volume occupied
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by the shapes is not increasing as the number of iterations increase. However,

each iteration increases the total perimeter of the shape by one third.

5.1.2 Antenna Analysis

To utilize the fractal loop as an antenna, an approximation must be made. A
true fractal, with an infinite perimeter, is physically impossible to realize. How-
ever, the first several iterations can be used to show the benefits of using fractal

geometries.

To show the benefits of a small fractal loop antenna, the fourth iteration of the
Koch loop is compared to a circular loop antenna. The relative sizes of the two
antennas are shown in Figure 5.3. It can be seen that the circular loop antenna
circumscribes the fractal loop. However, the areas occupied by the two antennas

are not the same. The circular antenna occupies a larger area.

The area of the fourth iteration of the fractal loop, which is a key parameter

for small loop antennas, with a radius r, is given by

3 12 48+192 13v3
9 81 729 6561/ 2 2

Areasoe toop = (1 + -+ =+ T2 = 20572 (5.1.1)

The area of a circle is given by
Area‘circular loop = 7TT.2 (5.12)
Therefore, if the two areas are compared,

A
AT 1000 _ () g5 (5.1.3)

Area’Circular loop
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Circle Loop Koch Loop

Equal Radius

Figure 5.3: Relative sizes of the loop geometries. Volume occupied by both

geometries is identical. The input source is shown at the bottom of the loops.
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it can be seen that the area of the fourth iteration of the Koch island fractal is

35% smaller than a circumscribed circle.

The perimeter of the fourth iteration of a Koch loop is given by

4 n
Perimeteri, e 100p = 3V3r <§> (5.1.4)

where n is the number of generating iterations. Therefore, the perimeter of a

fourth iteration Koch loop is given by

Perimetery,q, 100, = 16.427 (5.1.5)

The circumference of a circle is

Perimeterci,cutar 100p = 27T (5.1.6)

Therefore, the perimeter of a fourth iteration Koch loop is 2.6 times longer

than a circumscribed circular loop.

Perimeterxoch loop

— 2614 5.1.7
PerimeterCircular loop ( )

The two antennas are analyzed using the moment method. The segment size
for each of the antennas are identical. A frill voltage source is used to model the
feed to determine the input impedance of the antenna. A delta gap source is used
to model the feed to calculate the far field patterns. The location of the feed is

shown in the bottom of Figure 5.3.

The antennas are tested over a frequency range that has been normalized to
the length of the perimeter of the circular loop. The circular loop antenna has

a perimeter of 0.05 A to 0.26 A\ over the tested frequency range. The perimeter
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of the fractal loop is 0.13 A to 0.68 A. For this range, the segment length for the
simulations span 0.00017 A to 0.00089 A, while the wire diameter ranges from
0.000014 X to 0.000072 A.

5.1.3 Results

The moment method is used to calculate the input resistance and the far field

pattern of the two antennas. Their results are compared below.

The input resistance of the two antennas are compared in Figure 5.4. A
circular loop with a perimeter of 0.05 A has an input resistance of 0.000004 €2,
increasing to only 1.17 {2 as the perimeter increases to 0.26 A. However, the
input resistance of the fractal loop increases at a much higher rate than the
circular loop. The input resistance at the low end of the tested range is still very
low, 0.000015 €2, but increases to 26.65 €2 at the higher end of the range. The
input resistance of a fractal loop and a circumscribed circular loop is plotted in
Figure 5.4 versus the perimeter of the circular loop in wavelengths. The noise in
the plots are from numerical limitations due to the small sub-sectioning of the

structures.

The small input impedance matches the prediction of the radiation resistance
given in [44]. Thus, ignoring ohmic losses, the radiation resistance for a small

loop at the upper end of the test range is given by
S2
R, ~ 31,171 <ﬁ> = 0.99 (5.1.8)
where S is the area enclosed by the loop, 7(0.0414))%. This matches closely with

the value of 1.17 Q) that was calculated with the moment method.

The improvement of the input resistance of a fractal loop creates a better
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Input Resistance for Fractal Loop and Circumscribed Loop
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Figure 5.4: Simulated real part of the input impedance for the loop antennas.

match between the loop antenna and a 50 {2 transmission line. An input resistance
of 26 (2 allows for an input match better than S11 = -10 dB. There is an imaginary
component in the input impedance of the antennas which would increase the
mismatch losses. However, theoretically, a reactive element can be added in

parallel to the antenna to make it resonant.

The far field pattern for the two loops are compared in Figure 5.5. Figure 5.5
(a) shows the patterns in the xz and yz cuts. Figure 5.5 (b) plots the pattern in
the xy plane. The loops are in the xy plane.

The simulated directivity of the circular loop antenna is 1.63 dB, while the
simulated directivity of the fractal loop antenna is 1.53 dB. The simulated direc-

tivity of the small circular loops matches well with the predicted value of

Upee 3
Dy = 42" = - = 1.76 dB (5.1.9)

rad
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Figure 5.5: Simulated far field patterns for loop antennas lying in xy plane. a)

xz and yz cuts b) xy cut.

given in [44], where U,,,, is the maximum radiation intensity and P, is the total

power radiated.

The effective aperture size for this type of antenna is given in [44] as

M2 pY
Agn = (-) Dy = ?;— = 0.119)2 (5.1.10)

4 s
The aperture efficiency for the circular loop antenna is given by,
Ao 0.119)2

= =22.12 5.1.11
S 7 (0.0414))° ( )

This shows that the circular loop antenna is 22 times larger electrically than

its physical size.

For the fractal loop antenna, the effective aperture is
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)\2
Apn = (4—) Dy = 0.113)2 (5.1.12)

™

which results in an aperture efficiency of

Aen  0.113X
S 2.05(0.0414))

= 32.21 (5.1.13)

Therefore, electrically the fractal antenna is 32 times larger than the area it

encompasses.

It is interesting to note that the directivity levels of the loop antennas are very
similar to each other. However, because the length of the fractal is closer to one
wavelength, 0.68 A, the radiation patterns are not similar. The radiation pattern
of a typical small loop is very similar to a small dipole. As the perimeter gets
longer, the pattern begins to develop a multi-lobe pattern. Due to the increased
length of the perimeter of the fractal antenna, the multi-lobe pattern emerges
before it would for a circular loop even though the area of the fractal antenna is

smaller than that of a circular loop.
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Figure 5.6: Sequence for generating a Minkowski loop. Each iteration is generated

by replacing each segment of the previous iteration with the generator.

5.2 Resonant Loops

The closer the perimeter of a loop antenna gets to one wavelength, the more
dependency its characteristics have on the shape in addition to its size. A fractal
shape can be used to reduce the size of the antenna by increasing the efficiency

with which it fills up its occupied volume with electrical length.

A Minkowski fractal is analyzed, where the perimeter length is near one wave-
length. Several iterations are compared with a square loop antenna to illustrate

the benefits of using a fractal antenna.

5.2.1 Fractal Generation

The fractal shape that is studied in this class of fractal loop antennas is a square
Minkowski loop. The generation of the fractal is very similar to the loop that
was used in the previous section. The fractal used in the small loop section was a
Koch loop started with a triangle. A square is the starting shape for this fractal.

The process is outlined in Figure 5.6.

A similar sequence is utilized in the generation of this loop as for the small

loop. A generator segment replaces each segment in the starting shape. The
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starting shape is a square. Each of the four sides is replaced with the generator,
shown in the bottom of Figure 5.6. The generator is scaled after every iteration
such that the endpoints of the generator are exactly the same as the starting line

segment.

This process of replacing every segment with the generator is repeated an
infinite number of times in the generation of a true fractal. The starting square
shape has an iteration number of 0. Replacing each of the four sides of the
starting square with the generator is the first iteration. Replacing every segment

of the new shape with the generator is the second iteration, and so on.

In the section covering small fractal loops, each segment of the generator had
the same length, one third of the original length. For the square fractal for this
section, the length is variable. The two end segments and the middle segment are
% of the starting segment length. The other two segments are tuned to adjust the
overall perimeter of the fractal length. This tuning length is called the indentation

width and is labeled on the generator shown in the bottom of Figure 5.6.

Varying the indentation width affects the fractal dimension of the shape. The
greater the indentation width, the greater the fractal dimension. The fractal
dimension dictates the space filling ability of the fractal. A dimension of 1.0
only fills up one dimension. Likewise, a dimension of 2.0 completely fills up a
two dimensional area. As the dimension approaches two, the more it fills up a
planar area. Therefore, the area encompassed by the fractal loop and the overall

perimeter length is dependent on the indentation width.

5.2.2 Antenna Analysis

This fractal is analyzed as a resonant loop antenna by analyzing a finite number of

iterations. The first two iterations of the antenna, as well as a square antenna, are
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compared to show how the characteristics of the antennas change as the number
of iterations are increased.

The fractal shape is also varied by the indentation width. Six representative

widths were chosen. They include: %, %, %, %, %, and %. The indentation widths
are the widths of the second and fourth segments as a fraction of the other three
lengths, which were each % the length of the starting segment, as depicted in the

bottom of Figure 5.6.

The antennas are simulated using the moment method and verified by fabri-
cating and testing representative variations in a far field measurement chamber

at the Antenna Laboratory at UCLA.

The antennas are all scaled by varying the starting overall width to be resonant
at the same frequency. The segment length of each of the antennas are the same
for each group with matching indentation widths. The size of the segment for
each of these groups was determined by the smallest dimension of the highest

iteration. The wire diameter for the simulations is 0.002 \.

A voltage frill source is used to calculate the input impedance of the loop
antennas while a delta gap source is used to model the feed in the far field

calculations.

5.2.3 Design Curves

These antennas can be designed from the empirical data gathered while making
the antennas resonant at the same frequency. The empirical data leads to design
curves, which specify the starting width of the fractal for a particular indentation

width and a particular fractal iteration.

The scaling factor that is used to scale a square loop with a width of A/4 to
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Figure 5.7: Scaling factor to make a square loop that is A/4 per side resonant for

different indentation width values for a Minkowski fractal loop.

achieve resonance for the various indentation widths versus the fractal dimension

is shown in Figure 5.7.

It can been seen from these plots that as the indentation width is increased,
the antennas are miniaturized more effectively. The fractal dimension is also
directly related to the indentation width. While it is mathematically challenging
to numerically define the fractal dimension of the loop, it is known that as the
indentation width is increased, the fractal dimension is also increased. Therefore,
one can suspect that higher fractal dimensions lead to better miniaturization of

resonant loop antennas.
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Figure 5.8: Relative sizes of the loop geometries for the first two iterations with

an indentation width of 0.8. Each loop shown is resonant at the same frequency.

5.2.4 Results

Loops that have the same resonance with an indentation width of 0.8 are shown
relative to each other in Figure 5.8. It can be seen how the second iteration loop

is much smaller than the square loop.

The required heights of each of the loops to be resonant was determined by
the moment method and verified by building and measuring the antennas. The
height of each of the loops versus the fractal iteration is given in Figure 5.7 for
various indentation widths. The input match of these antennas at resonance vary

between 100 €2 down to 40 2.

The far field patterns for the square loops of different indentation widths and
fractal iterations are shown in Figure 5.9. The pattern is the yz cut. The loop

antenna lies in the xz plane.

The directivities of the loop antennas are given in Table 5.1 along with their
relevant geometrical properties. The calculated directivity of the square loop, 3.45
dB, compares with the expected max directivity for a one-wavelength square loop

given in [45] of 3.09 dB. The directivities of the fractal loops are slightly lower
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Figure 5.9: Far field pattern for resonant fractal loop antennas for various inden-
tation widths and fractal iterations as computed by the moment method. The

pattern cut is orthogonal to the plane of the loop.
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than that of a square loop. The directivities of the fractal loops range from 3.21
dB for the lowest iteration fractal loop with the shallowest indentation width to
2.17 dB for the fractal loop with the highest iteration and largest indentation
width.

Table 5.1: Directivity data for the loop antennas over varying indentation widths

and fractal iterations. All of the antennas are resonant at the same frequency.

Indentation Iteration Width Area D, (dB) Aerm Aem/S

0.200 1 0.2680\ 0.06543)\2 3.21 0.1666)\*  2.547
2 0.2640\  0.06005\2 3.12 0.1632)\%  2.718

0.333 1 0.2543\  0.05510\? 3.02 0.1595)2  2.895
2 0.2462)\  0.04665)\> 2.87 0.1541X?  3.303

0.500 1 0.2379\  0.04400)\? 2.82 0.1523\%  3.462
2 0.2240\  0.03284)\? 2.61 0.1451)%  4.420

0.666 1 0.2222)\  0.03477)\2 2.66 0.1468)%2 4.223
2 0.2025\ 0.02212)2 2.40 0.1383)\2  6.252

0.800 1 0.2097X  0.02833\2 2.56 0.1435)\%  5.064
2 0.1862)\  0.01549\? 2.27 0.1342)\*  8.662

0.900 1 0.2010\  0.02423)\2 2.51 0.1418\2  5.853
2 0.1731X  0.01132)2 2.17 0.1312)%2  11.59

Square 0 0.2795)\  0.07812)\? 3.45 0.1761)%  2.254

It is interesting to point out that even though the directivity decreases as
the fractal iteration and indentation widths are increased, the aperture efficiency
increases. The physical area encompassed by a fractal generated with a high
number of iterations and with a deep indentation width is much smaller than a

square loop. Therefore, while the aperture efficiency of a square loop is only 2.254,
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Figure 5.10: Fabricated loop antennas. The loop antenna was mounted over a

ground plane. Both antennas are resonant at the same frequency.

the aperture efficiency of a second iteration fractal loop with a 0.9 indentation
width has a aperture efficiency of 11.59. Comparing these two antennas, a loss
of directivity of 1.28 dB can be traded off for a 38% decrease in occupied width,

which correlates to an encompassed area that is almost 7 times smaller.

The antennas were fabricated using the techniques outlined in chapter 4.
They are designed for resonance at 2.5GHz, a frequency that is in common use in
wireless applications, and easily measurable and manufacturable. Photographs
of the resulting antennas are shown in Figure 5.10 and Figure 5.11. Figure 5.10
shows the antennas that were attached over a ground plane using image theory
as the other half of the loop. The antennas in Figure 5.11 are fabricated using

the microstrip to co-planar strip method that was described in chapter 4.

The resulting input matches of the fabricated antennas of Figure 5.10 are
plotted in Figure 5.12. The input match is in reference to 50 {2 and has been

measured using an HP 8510B network analyzer.

The calibrated far field patterns of the same antennas are shown in Fig-
ure 5.13. The patterns are taken in a cut that is orthogonal to the plane of the
loop. It can be seen that the resulting gains of the antennas are very similar to
those predicted with the moment method simulations. The asymmetry in the
patterns is due to reflections off of the walls of the chamber. These reflections

result from measuring the antennas at the limits of the allowable frequency range
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Figure 5.11: Fabricated loop antennas using a microstrip to co-planar strip tran-

sition. Both antennas are resonant at the same frequency.
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Figure 5.12: Input match for fabricated loop antennas. The shift in resonant

frequency is from the dielectric backing.
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Measured Gain at Resonance
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Figure 5.13: Measured far field pattern for the loop antennas at resonance. The
patterns are calibrated for an accurate gain measurement.
of the microwave absorbers used to line the chamber.

The input match and the far field patterns of the antennas fabricated using
the CPS-to-microstrip technique, pictured in Figure 5.11, are very similar to the

data shown above.
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CHAPTER 6

Fractal Dipole Antennas

The previous section showed the benefits of fractal loop antennas. Dipoles can
benefit from fractal geometries, as well. The expected benefit of using a fractal
as a dipole antenna is to miniaturize the total height of the antenna at resonance,

where resonance means having no imaginary component in the input impedance.

In the next several sections three types of fractals are investigated as dipole
antennas. They include two planar structures, a Koch curve and a fractal tree,
and a three dimensional fractal tree. These three types of fractals are compared

among each other and to a straight dipole.

These antennas are simulated as dipoles along the z axis using the moment
method. The starting structure for each of these fractal geometries is straight
dipole that is resonant in the PCS band, at 1900 MHz. In the simulations, the
antenna height is held constant and the frequency is swept. It can be seen that
the resonant frequency decreases as the number of fractal iterations increases.
The decrease in resonant frequency can correlate to a miniaturized antenna, if

the resonant frequency would be held fixed.

6.1 Koch Monopole

The first fractal shape that is investigated as a dipole antenna is the Koch curve.

The geometry of how this antenna could be used as a dipole is shown in Figure 6.1.
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Figure 6.1: Geometry of a Koch curve used as a dipole antenna.

This type of fractal has been previously studied in [25]. Similarly, in this
thesis, the goal of using a Koch curve as a dipole is the miniaturization of the

antenna at resonance.

6.1.1 Fractal Generation

A Koch curve is generated by replacing the middle third of each straight section

with a bent section of wire that spans the original third as shown in Figure 6.2.

Each iteration adds length to the total curve. This can be seen from the figure
depicting the generating process. Each iteration results in a total length that is
4/3 times the original geometry. However, the overall height of the fractal does
not change from one iteration to the next. Therefore, if the process is carried out
for an infinite number of times, the curve would have an infinite length while the

overall height would not change.

The total length of the Koch curve is given by
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Figure 6.2: First iterative steps for generating a Koch curve.

4 n
Length, . = h (5) (6.1.1)

where n is the number of iterations and h is the height of the straight starting

generator.

The starting structure that is used in this section is half of a resonant PCS
dipole, which is 3.75 ¢cm in length. The overall length of the resonant dipole is
7.5 cm, which is slightly smaller than A/2 at 1900 MHz.

6.1.2 Antenna Analysis

These fractals are analyzed as resonant dipole antennas using the moment method.
The fractal generated in the previous section is mirrored at its base and fed as
a dipole as depicted in Figure 6.1. The first five iterations of the Koch fractal
are analyzed. By observing the first five iterations, the benefits of using fractal
geometry will become apparent while avoiding the difficulties of simulating struc-
tures with very complex geometries. It can be shown that the benefits of fractal
antennas begin to diminish as the number of generating iterations is increased
beyond the first few. These first five iterations are compared with a straight

dipole, iteration 0.
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Figure 6.3: Simulated input match of the straight dipole and the first five iteration

for the Koch dipole antennas matched to 50 2.

All of these antennas are subsectioned with equally sized segments. Each
subsection is 0.000977 A in length and 0.00095 X\ in diameter, where A is the
wavelength at 1900 MHz. For the input impedance calculations, a frill voltage

source is used, while a delta gap voltage source is used in far field calculations.

6.1.3 Antenna Characteristics

The simulated characteristics of the Koch dipole are presented in this section.
In Figure 6.3, the input impedances of the dipoles are plotted versus frequency.
It can be seen how the resonant frequency drops as the number of generating
iterations for the fractal is increased. Also, it is interesting to note that the
resonant frequency approaches an asymptotic limit. This limit gives an insight
into where the resonance of an ideal Koch fractal curve as a dipole would lie, if
such a structure were manufacturable. The simulated input impedance plots are

shown in Figure 6.4.
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Figure 6.4: Simulated input impedance for the first five fractal iterations of Koch
dipoles plus a straight dipole for comparison. a) Input resistance b) Input reac-

tance

The far field patterns for the different iterations are plotted in Figure 6.5 in

all three primary cuts. The plots are all taken at resonance.

6.1.4 Iteration Scaling

The miniaturization of the fractal antenna is exhibited by scaling each iteration
to be resonant at the same frequency. The relative heights of each iteration are

plotted in Figure 6.6.

The miniaturization of the antennas shows a greater degree of effectiveness
for the first several iterations. The amount of scaling that is required for each

iteration diminishes as the number of iterations increase.

The geometrical results of the simulations are given in Table 6.1. The resulting

total length of the resonant antennas show that the resonant frequency is not only

52

2000



Koch Dipole
Directivity patterng=0° & @=90°
5 T T T T T
0 |- 4
_5 |- 4
-10 [ / 1
o —— Straight Dipolep=0"
° _15 [ | — Straight Dipolep=90° 1
2 Iteration 1¢=0"
2 —— lteration 1¢=90°
g —20 Iteration 2¢=0°
-‘5' Iteration 2¢=90"
25 Iteration 3@=0"
- —— lteration 3¢=90°
Iteration 4¢=0"
-30 —— lteration 4¢=90"
Iteration 5¢=0"
—— Iteration 5¢=90°
ey ”
_40 Il Il L L L L
0 45 90 135 180 225 270 315
5]
(a)
Figure

360

Directivity (dB)

25

15

0.5

Koch Dipole
Directivity patternd=90°

—— Straight Dipole

—— lteration 1
Iteration 2

— lteration 3
Iteration 4
Iteration 5

Il Il Il Il
180 225 270 315

¢

(b)

Il
45 90 135 360

6.5: Far field directivity pattern for Koch dipoles of different fractal iter-

ations. a) versus 6 for ¢ = 0° and ¢ = 90° , b) versus ¢ for § = 90°

Figure 6.6: Relative heights of a resonant Koch dipole for different fractal itera-

tions. Only half of the dipole is shown in the figure.
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Table 6.1: Height and length of Koch fractal antennas in terms of wavelengths

at resonance.

Iteration Height Length

0 0475 X 0475 A

1 0.399 A 0.532 A
0.354 A 0.629 A
0.332 X 0.788 A
0.326 A 1.029 A
0.324 A 1.367 A

[ B L >~ I V)

a function of the electrical length. The total length of the fractals at resonance
is increasing, while the height reduction is reaching an asymptote. Therefore,
it can be concluded that the increased complexity of the higher iterations are
not advantageous. The miniaturization benefits are achieved in the first several

iterations.

6.2 Fractal Tree

Another type of fractal that can be utilized as a dipole is a fractal tree. The
geometry of how the fractal is used is shown in Figure 6.7. This deterministic
fractal is a simple model of branching found in nature. Again, the goal of using

this type of fractal is to reduce the height of a resonant dipole antenna.
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Figure 6.7: Geometry for the feeding of a fractal tree as a dipole.

11777

Iteration O lteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Figure 6.8: Geometry for the feeding of a fractal tree as a dipole.

6.2.1 Fractal Generation

The fractal is generated by applying an iterative sequence to the starting struc-
ture. The fractal is started with a simple monopole. The top segment of this
monopole is then split at a pre-determined angle, # = 60° in this section, to form
the first two branches. As the iterative process continues, the end segment of

each branch splits into two more branches as shown in Figure 6.8.

The total electrical length of the conductor, [, which is depicted graphically in
Figure 6.8, remains constant throughout the iterative process. The total electrical

length can be defined as the shortest length from the base of the fractal to any
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other end.

The lengths of each straight section in the first five iterations are shown in
Table 6.3. It can been seen from the section lengths that the total conductor

length, [, always adds up to unity for each iteration.

Table 6.2: Length of each straight section of the fractal tree for the first five

iterations.
Iteration 0 1 2 3 4 5
1 1 1 1 1 1
3 7 15 31 63
2 2 2 2 2
3 7 15 31 63
4 4 4 4
7 15 31 63
8 8 8
15 31 63
1616
31 63
32
63

6.2.2 Antenna Analysis

The first five iterations plus a straight dipole were analyzed using the moment
method. In the previous section describing the Koch dipole antenna, the overall
height was maintained from iteration to iteration. For the tree fractal, the total
length of the conductor path, [, is maintained among iterations. The fractal is

mirrored at its base and fed in the center as dipole. This is depicted in Figure 6.7.

The subsection size for each iteration of the antenna is the same. The segments
are each 1/63 of the total conductor length I. At the resonant frequency of the
straight dipole, 1900 MHz, this length is equal to 0.00377 A. The diameter of
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Figure 6.9: Simulated input impedance matched to 50 €2 for the first five iterations

of a fractal tree dipole with a split angle of 60° and for a straight dipole.

each segment is 0.00095 X at this frequency.

Similar to the previous simulations, the feed is modeled as a frill voltage source

for input impedance calculations and a delta gap for far field calculations.

6.2.3 Antenna Characteristics

The input match, compared to 50 €2, of the fractal dipoles and straight dipoles
as calculated using the moment method are shown in Figure 6.9. The input

impedances, real and imaginary, are shown in Figure 6.10.

It can be seen that the resonant frequency drops as the fractal iteration is
increased. The ratio of miniaturization versus the fractal iteration is very similar
to that of the Koch dipole. This observation will be compared in a subsequent

section.

As the fractal iteration is increased, the resonant frequency decreases in a

saturating manner. At each iteration the extra number of branches top loads the
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Figure 6.10: Simulated input impedance for the first five iterations of a fractal
tree dipole with a split angle of 60° and a straight dipole. a) Input resistance, b)

Input reactance

antenna. Even though the electrical length of a single conductor path from the
generator port of the antenna to the tip of a branch is identical for all antennas,
there are more branches after each iteration. This adds more conduction paths
at the top of the antenna serving as a top-loading device. This, in turn, lowers
the resonant frequency at every iteration. It can be seen that the top loading
effect diminishes as the number of iterations is increased. The length of wire that
branches out during each iteration is almost half as small as the previous iteration,

thus the effect it has on the input characteristics of the antenna diminishes.

The far field patterns of a fractal tree dipole are very similar to that of a
straight dipole in all cuts. A typical far field pattern of one of the antennas is
shown in Figure 6.11. The antenna chosen with a typical far field pattern is a

fourth iteration fractal tree whose branch split angle is 60°.
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Figure 6.11: Far field pattern of a typical fractal tree antenna. This one is for

a fourth iteration fractal tree with a 60° branch split. a) E-Plane cut that is
parallel to plane of branches, b) E-Plane cut that is perpendicular to plane of

branches
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Figure 6.12: A three dimensional fractal tree fed as a dipole.

The benefit of using this class of fractal antennas is that it can miniaturize a
standard dipole. The calculated far field patterns are very similar to a straight

dipole antenna.

6.3 Three Dimensional Fractal Tree

A three dimensional fractal tree has a similar geometry as the previous section.
However, instead of branching in one plane, the fractal branches out in three di-
mensions. The resulting antenna exhibits similar benefits as the two dimensional
case to a greater degree. The geometry of how this type of fractal can be utilized

as a dipole is shown in Figure 6.12

6.3.1 Fractal Generation

The three dimensional fractal tree is generated in a similar fashion as the two

dimensional case. The top of a straight monopole is split into four branches. The
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Figure 6.13: The generation of a three dimensional fractal tree. At each iteration

the branches split into four segments in two orthogonal planes.

branches split off at a set angle in two orthogonal planes. The angle used in this
study is 60°. The resulting four branches then split in a similar manner. The
ratio of the sizes of each of the branches at each iteration is outlined in Table 6.3.

The generation of the first five iterations of the fractal is depicted in Figure 6.13.

Table 6.3: Length of each segment of the three dimensional fractal tree for the

first five iterations.

Iteration 0 1 2 3 4 5
1 1 1 1 1 1
3 7 15 31 63

2 2 2 2 2
3 7 15 31 63

4 4 4 4

7 15 31 63

8 8 8

15 31 63

16 16

31 63

32

63
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Figure 6.14: A dipole and the first five iterations of a fractal tree in a dipole

configuration simulated using the moment method.

6.3.2 Antenna Analysis

For the purpose of studying this fractal as an antenna, the first five iterations are
used. As before, this shows us the trends of the benefits of using a fractal within
the computational limitations of the simulations. The fractal generated above is
mirrored at the base. These antennas are simulated in a dipole configuration, as

shown in Figure 6.14, using the moment method.

As in the two dimensional case, the subsection size for each iteration is the
same. The segments have a length of 1/63 [, where [ is still the length of a path
from the base to one tip. At the resonant frequency of the straight dipole, 1900
MHz, the segment length is equal to 0.00377 A. The diameter of each segment is
0.00095 XA at this frequency.

Similar to the previous simulations, the feed is modeled as a frill voltage source

for input impedance calculations and a delta gap for far field calculations.
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Figure 6.15: Input match for various iterations of a three dimensional fractal tree

matched to 50 2.

6.3.3 Antenna Characteristics

The simulated input match for the antennas is shown in Figure 6.15. It can be
seen how the resonant frequency decreases as the fractal iteration is increased.
In a similar fashion as the previous fractal dipoles studied, the input resistance

decreases as the fractal iteration is increased, resulting in a poorer input match.

The far field patterns of the fractal antennas are shown in Figure 6.16. The
pattern is taken in a primary cut in the plane of the dipole. The dipole oriented
along the z axis, this would be the ¢ = 0° cut. The far field patterns of each
of the iterations are calculated at resonance. It can be seen at resonance that
the patterns do not vary as the fractal iteration is increased. In addition, the

patterns and maximum directivities are very similar to the expected performance
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Figure 6.16: The simulated directivity patterns for the various iterations of the
three dimensional fractal tree dipole. The pattern is taken in the ¢ = 0° cut in

the plane of the z directed dipole at resonance.

of the straight dipole.

6.4 Fractal Dipole Comparisons

The benefits of the various fractal geometries can be compared. All of the dipoles
that are compared in this section have the same starting height. The starting
geometry is a resonant dipole that is 7.5 cm in length, resonant in the PCS band
at 1900 MHz. The relative geometry of all of the compared dipoles is shown in
Figure 6.17.

The benefits of using a fractal geometry are dependent on the type of fractal

that is chosen. A comparison of the miniaturization of the antennas by increasing
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Figure 6.17: Three various fractal geometries are configured as dipoles, including
a Koch fractal, a fractal tree, and a three dimensional fractal tree. The starting

size of each of the geometries are identical PCS band dipoles.
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Figure 6.18: The resonant frequency for each of the fractal antennas versus the
number of iterations for a Koch fractal, a fractal tree, and a three dimensional

fractal tree in a dipole configuration as simulated with the moment method.

the number of generating iterations is depicted graphically in Figure 6.18.

It can be seen that the miniaturization benefits of both two dimensional struc-
tures, the Koch fractal and the fractal tree, are very similar. The benefit of the

three dimensional fractal tree, however, is more pronounced.

Even though the three dimensional fractal miniaturizes the antenna at reso-
nance to a greater degree than the other fractals, the input resistance is lowered
by a significant amount, as well. It can be seen from Figure 6.19 that the input
resistance of the Koch and fractal tree dipoles drops to near 30 €2 at resonance
for the fifth iteration. Likewise, the input resistance of the three dimensional
fractal tree drops to 20 2 due to the increased amount of conducting branches.

This would decrease the match to a 50 €2 feed line. The fractal geometry chosen
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Figure 6.19: Simulated input resistance versus the number of generating iterations

for three fractal antennas.

for a particular application would have to weigh the trade-off between increased

miniaturization versus input resistance.

It can be seen from the plots of the simulated input match for the various
dipoles that they are all narrow band antennas. The simulated 3 dB bandwidth of
the dipole antenna is about 2.4%. This can be compared with the 3 dB bandwidth
of the simulated fractals generated from the highest number of iterations, which
have the lowest resonant frequency. The simulated bandwidth for the highest
iteration of the Koch dipole is around 3.1%. For the fifth iteration of the fractal
tree dipole, the simulated bandwidth is 4.2%. The simulated bandwidth of the
fifth iteration of the three dimensional fractal tree is 12.7%, but only has a -7.75

dB input match at resonance.
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CHAPTER 7

Multiband Fractal Antennas

So far, only the space saving benefits of fractal antennas have been exploited.
There is another property of fractals that can be utilized in antenna construction.
Fractals have self-similarity in their geometry, which is a feature where a section of
the fractal appears the same regardless of how many times the section is zoomed
in upon. Self-similarity in the geometry creates effective antennas of different
scales. This can lead to multiband characteristics in antennas, which is displayed

when an antenna operates with a similar performance at various frequencies.

The object of this chapter is to show how fractals can be used as multiband
antennas. The Sierpinski sieve fractal is chosen as the geometry to test this
feature due to its astounding similarities in performance as an antenna at various
frequencies. This type of fractal as an antenna can be compared to a bowtie

dipole antenna. It can be fed in a similar fashion as shown in Figure 7.1.

This fractal antenna has also been closely studied at the Polytechnic Univer-

sity of Catalonia, Barcelona, Spain by Carles Puente-Baliarda et al. [11].

This type of antenna, while not being frequency independent, but having
several bands of resonance, can be compared with classical frequency independent
antennas such as log-periodics and spirals. These antennas are investigated in
detail in [46]. Tt is known that frequency independence is a result of retaining

a similar shape at many scales. It is interesting to point out that while this
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Figure 7.1: Sierpinski sieve fractal fed as a dipole.

property for spirals and log-periodics holds as these antennas grow larger, the
self-similarity of the fractal is contained in itself and does not require additional

area.

7.1 Fractal Generator and Geometry

The Sierpinski sieve is a good example of a self-similar antenna that shows multi-
band behavior. The generation of the fractal is shown in Figure 7.2. A Sierpinski
sieve dipole can be easily compared to a bowtie dipole antenna, which is the
generator to create the fractal. The middle third triangle is removed from the
bowtie antenna, leaving three equally sized triangles, which are half the height of
the original bowtie. The process of removing the middle third is then repeated
on each of the new triangles. For an ideal fractal, this process goes on for an

infinite number of times.

Since an infinite number of iterations is impossible to achieve, a finite number

can be used to show the multiband characteristics of the antenna. The shapes
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Figure 7.2: Generation of a Sierpinski sieve, starting with a bowtie antenna.
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Figure 7.3: Relative sizes of antennas used for multiband comparison.

that are analyzed here are shown in Figure 7.3. A Sierpinski dipole antenna is
compared to bowtie dipoles which are scaled versions of the effective antennas

contained inside the geometry of the Sierpinski antenna.

7.2 Antenna Analysis

The antennas are fed as dipole antennas, as depicted in Figure 7.1. How the
antenna is fed is identical to how a bowtie dipole antenna would be fed. There
is a very short segment of wire that connects the two half of the dipoles. The

generator is placed in the center of this small segment.

The fractal surface was subsectioned into triangular facets. The geometry of
the facets are shown in Figure 7.4 for half of the dipole antenna. The feeding

wire is shown in red in the bottom of the figure. The frill voltage source, used to

70



NN
NN

VAVAR S SNV VAVAVAR NN

NRRNRNNNVYVAA RNV
Y NRRNRVWA7
W N

NN

Figure 7.4: Triangular facets and feed wire for Sierpinski antenna simulations.

excite the feeding wire, is connected to the bottom end of this wire in the figure.
Also, a small connecting triangle was added to the structure to allow currents
to flow from one solid triangle of the sieve to the next. This connecting triangle

rounded out the holes cut in the fractal.

The height of the largest antennas, the Sierpinski 3 and Bow 3 antennas, are
22 mm. This height is chosen such that the first and second resonances of these
antennas would lie in commonly used bands. The first resonance occurs in C
band near 5 GHz and the second resonance occurs in X band near 11 GHz. The
height of the other antennas are 11 mm for the Sierpinski 2 and Bow 2 antennas.
The Bow 1 antenna is 5.5 mm high. The smaller geometries are the repeated
self-similar scales that comprise the Sierpinski 3 antenna. They are tested for
comparison purposes. The smaller antennas are expected to operate with equal

performance as the scaled effective antennas of the full fractal.

The feeding wire is 1 mm in length and is subsectioned into 3 pieces. At the

first resonance of 5 GHz, this length is equal to 0.017 A. The diameter of this
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Figure 7.5: Simulated input match of antennas matched to 50 €2.

subsection is 0.0017 A at this frequency.

7.3 Antenna Characteristics

The antennas were analyzed using the moment method. From this, the input
match of the antennas are attained as shown in Figure 7.5. Three distinct reso-

nances can be seen in the plot of S11.

These three resonances relate to the three sizes of the bowtie antennas and
the three self-similar sizes inside the Sierpinski antennas. The physical sizes
of these related structures are identical. A true interpretation can be obtained
by comparing the resonances of the Sierpinski 3 antenna with the three bowtie
antennas that have the same shape as the three scales found in the Sierpinski 3
shape. The Sierpinski 3 antenna matches at three resonances. The largest bowtie
antenna, bow 3, matches at the same frequency as the matches of Sierpinski 3.

The outline area that these two antennas occupy are the same, and thus their
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Figure 7.6: Input match of antennas matched to 50 €2 plotted on a logarithmic

scale.

lowest resonances are the same, as well. The smallest bowtie antenna, which is
the same size as the third self similar iteration of the Sierpinski antenna matches

at the third resonance of the Sierpinski antenna.

The highest frequency resonance for the Sierpinski 3 antenna is also the fourth
resonance of the largest bowtie antenna, bow 3. This exemplifies the logarithmic
nature of the antenna. Plotted in Figure 7.6 is the input match versus frequency
on a logarithmic scale. The even logarithmic spacing between the resonances can
be seen in this plot. Each resonance is approximately twice that of the one before.
This is what would be intuitively expected knowing that the self-similar features

of the geometry are scaled by a factor of two for each generating iteration.

The bandwidth of each of the bands is noticeably smaller than that of a bowtie
antenna. While the Sierpinski antenna can physically be compared to the bowtie
antenna, the bandwidth is only 18% at the highest band. The bandwidth of the

bowtie antenna is over 30%.
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Figure 7.7: Simulated far field pattern of antennas at first resonance. a) ¢ = 0°

cut b) ¢ = 90° cut.

The benefits of the multiband behavior, however, can be seen in the far field
pattern plots for these antennas. The far field patterns for the antennas at
their first, second, and third resonances are shown in Figure 7.7, Figure 7.8,

and Figure 7.9.

The far field patterns at the first two resonances are very similar for each of
the antennas in each primary cut. The pattern of the Sierpinski 3 antenna in
the ¢ = 0° and ¢ = 90° cuts at the first resonance correspond with the patterns
in equivalent cuts calculated at the second resonance. The property of having
similar patterns at various resonances is an important parameter for antenna

designed for multiband applications.
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Figure 7.8: Simulated far field pattern of antennas at second resonance. a) ¢ = 0°

cut b) ¢ = 90° cut.
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Figure 7.10: Currents on Sierpinski 3 dipole at a) first resonance, 5 GHz, b)

second resonance, 11 GHz, c) third resonance, 24 GHz

7.4 Surface Currents

To understand what part of the antenna is being utilized at each resonance, the
calculated surface currents are plotted. The surface currents for the Sierpinski 3

antenna and the bowtie 3 antenna are shown in Figure 7.10 and Figure 7.11.

The current distribution for the bowtie antenna and the Sierpinski antennas
gives an intuitive insight into how the antenna is operating at multiple frequencies.
The distribution of the current correlates with the self-similar geometry. The
surface currents are scaling themselves in the same manner as the geometry. As
would be expected, the antenna’s excitation is limited to the scaled geometry
that would resonate on its own had it been analyzed outside of the fractal. The
current distribution of the Sierpinski antenna shows that at the first resonance
of 5 GHz, the current is distributed over the entire fractal. However, at the

third resonance, 24 GHz, the current is limited to the bottom row triangle of
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Figure 7.11: Currents on bow 3 dipole at a) first resonance, 5 GHz, b) second

resonance, 11 GHz, ¢) third resonance, 24 GHz

the fractal. The current distribution of the bowtie antenna at the first resonance
resembles those of the three resonances of the Sierpinski antenna. The currents
on the bowtie antenna at the second and third resonances are more varied since

the antenna is not matched at these frequencies.
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CHAPTER 8

Applications of Fractal Antennas

There are many applications that can benefit from fractal antennas. Discussed

below are several ideas where fractal antennas can make an real impact.

The sudden growth in the wireless communication area has sprung a need for
compact integrated antennas. The space saving abilities of fractals to efficiently
fill a limited amount of space create a distinct advantage of using integrated frac-
tal antennas over Euclidean geometries. Examples of these types of applications
include personal hand-held wireless devices such as cell phones and other wireless

mobile devices such as laptops on wireless LANs and networkable PDAs.

Fractal antennas can also enrich applications that include multiband trans-
missions. This area has many possibilities ranging from dual-mode phones to
devices integrating communication and location services such as GPS, the global

positioning satellites.

Fractal antennas also decrease the area of a resonant antenna, which could
lower the radar cross-section (RCS). This benefit can be exploited in military

applications where the RCS of the antenna is a very crucial parameter.

Phased array antennas are another example of an application that can take
advantage of the miniaturization of loop and dipole elements. This idea is devel-

oped further in the next section.
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Figure 8.1: Array of two fractal square loops. Separation distance is the shown

as the distance between the edges of the elements.

8.1 Fractal Elements in Array Antennas

An enhancement to a phased array is a very wide scan angle, which requires the
elements to be very close together. Besides the obvious limitation of the width
of the elements, mutual coupling between the elements also limits the minimum

spacing, which decreases the scan angle.

Fractal loop elements are smaller than Euclidean resonant loops and can,
thus, have closer inter-element spacings while maintaining the edge-to-edge sepa-
rations. Mutual coupling changes the excitation current of each element causing
distortions in the radiation patterns. An array of two loop elements depicting

the edge-to-edge separation distance is shown in Figure 8.1.

8.1.1 Reduced Mutual Coupling

The design of phased array antennas needs to take into account mutual coupling.
The effects of mutual coupling usually include the filling in of nulls and the raising

of the level of back radiation [45].

One attempt to control mutual coupling between the elements of an array
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Figure 8.2: a) Far field patterns and b) S11 input impedance matched to 50

for the loop elements used in the arrays of this chapter. The relative sizes of the

two loops is drawn inset in (a).

is to increase the edge-to-edge spacing. For an array designed for a particular
pattern, the spacing between the edges of the elements is dictated by the desired
pattern and the width of the element. Hence, miniaturized elements can be used

to increase this spacing.

To verify the above observations, an array has been designed comparing stan-
dard square loop elements to fractal loop elements. The fractal that is employed
for this application is a third order Minkowski square loop, studied in section 5.2.
The two loop elements are designed to be resonant at the same frequency. Their
input impedance and far field patterns are shown in Figure 8.2. The arrays are

simulated as wire loop elements in free space.

The test case for comparing the two arrays is a 5 element, Dolph-Chebyshev

linear array scanned to 150° off of the axis of the array. The array is designed
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edge-to-edge separation = 0.A3

edge-to-edge separation = 0.026

Figure 8.3: Relative geometry for the two arrays using a) Minkowski square loop
elements, and b) using standard square loop elements. The space between the

elements is increased for the array with fractal elements.

for -30 dB sidelobes with 0.3\ spacing. The voltage excitation for this type of
array have the ratios of 1:2.41¢771:632:3.41¢773-264:2 41¢7748%.1¢776-528 a5 given
in [45]. These excitation coefficients have a high volatility between the elements
providing a setting with a strong potential for adverse mutual coupling. The
relative geometry of the two arrays is summarized in Table 8.1 and is shown in

Figure 8.3.

Table 8.1: Specifications used in the design of arrays showing reduced mutual

coupling with fractal elements.

Spacing Edge-to-Edge Progressive Phase (rad)

Square Loop 0.3\ 0.026 A 1.632
Minkowski Fractal Loop 0.3A 0.13X\ 1.632

The simulated far field patterns are plotted in Figure 8.4. The plots are the

normalized directivity for the two arrays, plus the normalized directivity of an
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Figure 8.4: Normalized, simulated directivity patterns for 5 element,
Dolph-Chebyshev, 0.3\ spaced linear array scanned to 150°. The three plots
shown include the simulated patterns using fractal square elements, square ele-

ments, and the ideal pattern as expected without mutual coupling.

ideal array without mutual coupling. The ideal pattern is generated using the
known linear array equation with a sin(f) element pattern [45]. The formula for

the complete pattern is given in Eq. (8.1.1).

f(0) = sin(0) Z_ Ape?™ (8.1.1)

where ¢ = fSdcosf + «, f = 27/, A is the wavelength, d is the center-to-
center spacing between the elements, « is the progressive phase of the excitation

of the elements, and A, are the excitation coefficients.

It can be seen from the normalized directivity patterns of Figure 8.4 how
mutual coupling adversely affects the arrays. Mutual coupling effects both of the
arrays, with square elements and with fractal elements, however, the results are

closer to what was expected with the fractal elements. While the ideal pattern
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Figure 8.5: Simulated received power by the end element of the array with the

other 4 elements radiating normally.

predicts a back radiation, § = 30°, of -30 dB, from the design, the back radiation
of the array with fractal elements is -26.8 dB down and the back radiation from

the square element array is -4.3 dB.

The received power of the end element shows how the mutual coupling is
decreased for the fractal element array. The simulated received power of the end

element with the other 4 elements radiating normally is plotted in Figure 8.5.

8.1.2 Tighter Array Packing

Another method of implementing the smaller dimensions of resonant fractal an-
tennas is to pack more elements into a linear array. The smaller elements would
allow for denser packed arrays. The following example is a densely packed array
using fractal elements. In the space of a five element array of square loop ele-
ments space 0.5\ apart, seven resonant fractal loop elements would fit, spaced
0.35\ apart, maintaining the edge-to-edge separation between the elements for

both the square and fractal arrays. This decrease in spacing between the centers
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of the elements results in arrays that can be scanned closer to the axis of the

array.

The elements that are used for this example are the same elements that are
used in the previous section, whose performances are shown in Figure 8.2. The
spacing and geometry of both arrays are shown in Figure 8.6. The overall length
of the array is maintained, as well as the edge-to-edge separation between the
elements. The spacing of the square element array is 0.5\, while the fractal
element array has a center-to-center spacing of 0.35\. Both arrays are uniformly
excited with a progressive phase to scan the main beam to 150° from the axis of

the array, as seen in Table 8.2.

Table 8.2: Specifications used in the design of arrays showing denser packing with

fractal elements.

Spacing Edge-to-Edge Progressive Phase (rad)

Square Loop 0.5\ 0.23\ 2.72
Minkowski Fractal Loop  0.35)\ 0.18X 1.9

The simulated far field patterns of the two arrays are compared in Figure 8.7.
Also plotted is the ideal patterns for the appropriate spacing and phasing com-
puted from Eq. (8.1.1). It can be seen how mutual coupling raises the back
radiation, # = 30°, of both the square element and the fractal element array by
about the same amount. However, from the design, the back radiation of the

fractal element array is 15 dB below that of the square element array.
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Figure 8.6: Relative geometry for the two arrays using a) Minkowski square loop
elements, and b) using standard square loop elements. The total width of the
array is maintained for the two arrays. The edge-to-edge separation between the

elements is similar for the two arrays.
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Figure 8.7: Simulated directivity patterns for a 5 element, 0.5\ spaced array of
square elements and a 7 element, 0.35\ spaced array of fractal elements, both
scanned to 150°, uniformly excited, and having equal total lengths. Also plotted
are the ideal patterns of the 5 and 7 element arrays with uniform excitation

neglecting mutual coupling.
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CHAPTER 9

Conclusion

Fractal geometry was first brought to light by Benoit Mandelbrot in 1975 as a way
to mathematically define structures whose dimension can not be limited to whole
numbers. These geometries have been used previously to characterize unique
occurrences in nature that were difficult to define with Euclidean geometries.
These examples in nature include the length of coastlines, the density of clouds,

and the branching of trees.

Just as nature is not confined to Euclidean geometries, antenna designs should
not be confined, as well. Looking at geometries whose dimensions are not limited
to integers may lead to the discovery of antennas with improved characteristics
over that which exist today. Presented in this thesis is a collection of several
fractal geometries implemented as antennas that can serve as an overview to the
infinite possibilities opened up by fractals. The fractals have shown the possibility
to miniaturize antennas and to improve input matching. Certain classes of fractal

geometries operate effectively as antennas at various frequency bands.

The miniaturization of the antennas has been explored for wire loop and dipole
antennas. There exists a variety of fractal geometries that can be implemented as
antennas. Several examples have been simulated and fabricated in this work. Two
different island fractals have been implemented into loop configurations observing
two different benefits, improved input match and reduced size. Three different

fractal configurations were tested as dipoles with the intent of miniaturizing the
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antennas.

The first advantage in using a fractal loop is how the fractal miniaturizes a
resonant loop antenna. By using a Minkowski fractal as a resonant square loop,
36% of the total width can be saved over using a resonant square loop. Also,
the input match and far field patterns of the two antennas are very similar. The
second advantage occurs when using a fractal loop antenna below resonance,
where a typical small loop would have a very low input impedance, which is
difficult to match. Using a Koch island fractal as a small loop, increased the

input impedance to 35 2 from 1 2 for an equal radius circular loop.

The three fractals that were studied as dipole antennas included a Koch frac-
tal, a fractal tree, and a three dimensional version of the fractal tree. The intent
of investigating these antennas was to find an effective method of miniaturization.
The results show that the two dimensional structures miniaturized the antennas
to a similar degree. However, the three dimensional dipole decreases the height

requirement by an even greater degree.

Also in this work, fractals that are particularly well-suited to multiband op-
eration are studied. The self similar nature of the geometry of a Sierpinski sieve
fractal results in very similar antenna characteristics across many bands as de-
fined by the geometry. The current distribution on the antenna gives some insight

into why this particular fractal acts so well at various bands.

Furthermore, fractal antennas can be configured to be used in a variety of u-
nique applications that take advantage of their space-saving and improved match-
ing characteristics. One example of this includes phased arrays. Using fractal
antennas in the design provides decreased mutual coupling and improved scan-
ning performance. Other applications that can benefit by using fractal antennas

are discussed.
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In the future, fractal antennas can be studied in several areas. One area of de-
velopment is to implement fractal antennas into current technologies in practical
situations, such as the expanding wireless market. For this application, a rigor-
ous analysis of the polarization of these antennas will need to be investigated.
Another benefit that can be explored is the lower encompassed area of resonant
loop antennas. This may lead to antennas with lower radar cross sections. Also,
fractals can be looked at as microstrip antennas and their excitation of surface
waves. Fractals may be able to be configured to further decrease mutual cou-
pling in arrays by decreasing the excitation of surfaces waves when the arrays are

printed on a dielectric.

Another area of interest worth pursuing is to analyze the mathematical as-
pects of fractals to correlate their improved characteristics as antennas with their

unique geometrical properties.
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